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ARMAR!
Bring me the apple
juice from the fridge
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What basic mathematical means are needed?

We need to describe positions of objects in space:

® Where is the apple juice box? (at which
coordinates?)

® Relative to which coordinate system?
= Relative to camera coordinate system?
= Relative to arm base (shoulder) coordinate system?

= Relative to robot mobile base coordinate system?

= Relative to world coordinate system?
(in the left corner of the kitchen)

b
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What basic mathematical means are needed?
We need to describe positions of objects in space:

We need to describe orientations of objects in space:
® |s the bottle located directly in front of the robot?

® Or to the left or to the right of the robot?

KIT
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A framework to describe positions (translations) and orientations (rotations) is needed!
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Kinematic Basis

@ This chapter is an introduction to the mathematical foundations of robotics

® Mathematical methods for the description of rigid body transformations
(based on linear algebra)

® Application of these methods to model robots

¥ b
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® Kinematics is the study of motion of bodies and systems based only on
geometry, i.e. without considering the physical properties and the forces
acting on them. The essential concept is a pose (position and orientation).

W Statics studies forces and moments acting on an object at rest. The essential
concept is a stiffness.

@ Dynamics studies the relationship between the forces and moments acting on
a robot and accelerations they produce,

¥ b
Robotics I: Introduction to Robotics | Chapter 1 H2T



KIT

Kinematics — Terminology ()

b
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Kinematics — Terminology (ll)

® Kinematic chain is a set of links connected by joints.

® Kinematic chain can be represented by a graph.
The vertices represent joints and edges represent

links.

Kinematics chain
human hand

(LFI11z, LFI11x)

LFI12
(LFI12x)

> Kinematics chain
"7 left arm
- 3
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Kinematics chain
human body
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Kinematics — Terminology (ll)

® Kinematic chains: examples

Kinematic chain ARMAR-I
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Kinematics chain ARMAR-IV
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Kinematics — Degrees of Freedom (DoF) ‘AJ(IT
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Degrees of freedom (less formal definition) is the number of independent
parameters needed to specify the position of an object completely.

Examples:
= A point on a plane has 2 DoF
= A pointin 3D space has 3 DoF
= Rigid body in a 2D space (i.e. on a plane) has 3 DoF
= Rigid body in 3D space has 6 DoF

¥ b
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Conventions

In this lecture, we will use the following conventions for equation symbols:

® Scalars: lower-case Latin letters
= Example:s,t ER

@ Vectors: bold lower-case Latin letters
= Example: a,b, c € R3

® Matrices: upper-case Latin letters
= Example: A € R3*3

® Linear maps (linear transformations): upper-case Greek letters
= Example: ¢(-):R3 - R3

N &
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Rigid Body Motion ‘AJ(IT
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A rigid body is a body that does not deform or change shape
Rigid body motion is characterized by two properties:

1. The distance between any two points remains invariant

— The motion of the body is completely specified by the motion of
any point in the body.

— All points of the body have the same velocity and same acceleration.

2. The orientations are preserved.
— Aright-handed coordinate system remains right-handed

¥ b
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SO(3) and SE(3)

Two groups which are of particular interest to us in robotics are
® SO(3) - the special orthogonal group that represents rotations and

W SE(3) - the special Euclidean group that represents rigid body motions

® Elements of SO(3) are represented as 3 X 3 real matrices and satisfy

i.e., R is a special

Tp — ; —
R'R=1 with det(R) = 1 orthogonal matrix

® Element SE(3) are of the form (p,R), where p € R3 and R € SO(3)

b
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W SO(3) ® SE(3)
= QOrientation
= R € SO(3) c R3*3

=  Position and orientation

= (p,R) €SE(3)
withp € R3,R € SO(3)

(p,R)
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Affine Geometry

® We use affine geometry to describe spatial transformations.
B These transformations are concatenations of rotations and translations

W Spatial transformations can be represented mathematically in several ways:
= rotation matrices and translation vectors
= homogeneous matrices
= quaternions
= dual quaternions

® This lecture will introduce the above representations.
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Euclidean Space ()

® Euclidean space is the vector space R? with the standard scalar product
(also know as dot product or inner product).

® Example:
A point ¢ located on a line between two points a and b can be represented as

c=t-a+(1—-¢t)-b, te(0,1) cR, ab,ceR3.

N &
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Euclidean Space (l1) ﬂ(IT
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® A point a in Euclidean space is represented by coordinates referring to a
coordinate system e, ey, e,.

— _ T 3
® Conventions:

= We use orthonormal coordinate systems, A
i.e. the base vectors e,, e,, e, are unit vectors
and perpendicular (orthogonal) to one another.

= We use right-hand coordinate systems.

Right hand rule: If the thumb points in the direction
of the x-axis and the index finger points in the direction
of the y-axis then the middle finger indicates the

direction of the z-axis.
Source: Wikipedia

N
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Coordinate Systems (l)

Right-hand rule for right-handed coordinate systems

y\ 1 x /é{
X &

b
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Coordinate Systems (ll)

Right-handed
coordinate system

e, Xe,=e,

XXy=1%
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Left-handed
coordinate system

e, X e, = —e,

XXy=—Z

X . cross product
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Linear Maps, Endomorphism

@ Linear maps (transformations) which map Euclidean space onto itself are
called endomorphisms:

¢():R° > R’
® Endomorphisms can be represented by square matrices:

d(@)=A-a, Ae€R3>3

® A describes a change of basis resulting from the original basis vectors

. !/ !/ /
€y, €y, €; and the new basis vectors ey, ey, e,
-1

A=|e, e, e |-[e, e, e,

b
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Isomorphismus

W Bijective (reversible) endomorphisms are called isomorphisms.

® [somorphisms may have special, interesting properties:

= They may preserve angles. (Examples: scaling and rotation)
= They may preserve lengths. (Example: rotation)

= They may preserve handedness.
(Example: rotation. Right-hand coordinate frame is preserved, etc.)

W A special set of isomorphisms which fulfills all of the above criteria is the
rotation group (or special orthogonal group) SO(3).
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The Rotation Group SO(3) ﬂ(IT
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® SO(3) contains all possible rotations around arbitrary axes through the origin

® SO(3) is non-abelian (not commutative), i.e.
A-B-x#B-A-x, x€R3 ABESO;.
Why are SO(3) and SE(3) interesting for robotics?

® Using SO(3) and SE(3), an object’s pose (i.e. position and orientation) in space
as well as transformations between two robot joint axes can be represented as a
combination of a translation and a rotation:

dp():R3>R3 ¢px)=t+R-x, Xx,t€R3 RESO;.
® The map ¢(+) is not linear! It is called affine.

¥ b
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Transformation between two Robot Joints

24 Robotics I: Introduction to Robotics | Chapter 1




KIT

Rotations in 2D (1)

® Rotation in the xy-plane around (0, 0) is a linear transformation.
® Rotation of angle 6 around (0, 0) transforms ... YV 4

® Vector (1,0)" to (cosa,sina)”
) 1 T P T
Vector (0,1)" to (—sina,cosa) v, = (017

v,' = (=sina,cosa)’
, 0 7 v, = (cosa,sina)T

@ Rotation matrix

cos® —sind > >
Ry(x) = :
0 (%) (sinH cos @ ) X \/ X
vl = (1,0)7'

with RRT = RTR =1, det(R) =1

b
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Rotations in 2D (2) .AJ(IT
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® Rotation around a point ¢ # (0, 0) is not a linear transformation.
It transforms (0, 0) to a point other than (0,0).

® Rotation around an arbitrary rotation center c:
= We shift the plane by —c such that the rotation center will be(0, 0).
= Then we perform a rotation around (0, 0).
= Then we shift back the plane by +c.

R o(x) = Rp(x—¢c) + ¢ = Rp(x) + (—Rg(c) + ©)

¥ b
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Affine Transformation ﬂ(IT
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R o(x) = Rp(x—c) + ¢ = Ryp(x) + (—Rg(c) + ¢)

® R, g is a non-linear transformation. It differs from Ry only in the addition of a
constant.

® Transformations (like R g) of the form
T(x) =A(x)+Db

are called affine transformations.

Robotics I: Introduction to Robotics | Chapter 1
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Rotations in 3D

W 2D rotation in xy-plane is a rotation in 3D around the z-axis.

@ Rotation of points around z does not depend on their z values and points on
the z-axis are not affected by this rotation.

® The rotation matrix around the z-axis takes a simple form:
» The submatrix corresponding to xy is identical to the 2D case,
» the value multiplying the z-value is 1,

» The entries corresponding to the influence of z (of the rotated vector)
on its x and y and vice versa are zero

cosf@ —sin@ 0
R,9=|sinf cosf O
0 0 1

Robotics I: Introduction to Robotics | Chapter 1



Rotations in 3D .ﬁ‘(IT

cosf —sinf@ 0
R, =|sinf cosf O

0 0 1

1 0 0
Ryg=(0 cosf —siné

0 sin® cosf

cosf 0 sin@
0 1 0
—sind 0 cosé

¥ b
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Inverse of a Rotation Matrix
The inverse of a rotation matrix is its transpose:
1 0 0 1 0 0
Ryp =Ry_g=|0 cos(=6) —sin(=0) |= (0 cosf sin9> =R},
0 sin(—6) cos(—0) 0 —sinf cos6
-1 _ pT
Rx,@ — Rx,@

Note:
This is the defining property for all orthogonal matrices.

(Rotation matrices R additionally have det(R) = 1.)

| b
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Concatenation of Rotations

® The concatenation of rotations

¢Z,93 (¢y,92 (¢x,91 (a)))» ac ]RB

B Important: there are two ways to interpret the above concatenation

= Left to right: With each rotation, the unit vectors change; rotations are performed
around local axes.

((RZ;93 . RJ/',92) ) Rx",91) ra= RZ'93 | R)"»ez . Rx”»91 ‘a

= Right to left: Rotations are performed around global axes (which do not change).
RZ'03 ) (Ryrgz ) (inel ) a)) - Rzr93 ) Ryrez ) Rx!01 a
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Example: Concatenation of Rotations (1) e e e

® Concatenation of the following rotations:

cos(~2)
= Rotation around y-axis: —90° (—E) Ry (— %) = 0

2 — sin (— E)
2

o = O
&
o]
~—~o 7
N—"

Il
N
o o
_ O
o |
=
N~

cos(m) —sin(m) O -1 0 0
= Rotation around z-axis: 180° (1) R, (1) = (Sin(n) cos(1) 0) - ( 0 -1 0)
0 0 1

/
S R (n) ,,
—90°
180°

b
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Example: Concatenation of Rotations (2)

® Calculation of the rotation matrix :
From left to right:

- 0 0 -1 The unit vectors change with
R =R, (_ E) ‘R,(m)=10 -1 0 each rotation. Rotations
-1 0 0 around local axes.

® Transformation of a vector

0 0 -1 0 0 -1 P1 —P3
w=(0 = 0)o=(o =t o) (m)=()
-1 0 0 -1 0 0 P3 —P1

Z
x' "

T
—9(Q° Ry (_E) z' R (n) y!
=) 180°
y y'
X

< &
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Problems with Rotation Matrices

@ Rotation matrices have a number of drawbacks:
= Redundancy: nine values for one rotation matrix

* In machine learning: If the entries of a rotation matrix are predicted
independently, it is likely that the resulting matrix is not a valid rotation
matrix! (more on that later...)

® How to deal with these problems?

= Use other representation for rotations, e.g. Euler angles.
= Orthonormalize the matrix.

N &
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Euler Angles

W It is possible to represent every thinkable rotation by three rotations around
three coordinate axes.

® The axes can be chosen arbitrarily, but due to historic reasons,
a very common convention is the so-called Euler z x'z" convention.

® The angles a,  and y are the Euler angles. They describe the rotation matrix

R, Rx',B Rz",y —
cosy-cosa—siny-cosf-sina —siny-cosa—cosy-cosf-sina sinf-sina
cosy-sina+siny-cosff-cosa —siny-sina+cosy-cosff-cosa —sinfl-cosa
siny -sinf cosy -sinf cos f3

35 Robotics I: Introduction to Robotics | Chapter 1
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Euler Angles z x' z"

Sequence of rotations:
1. Rotation by a around the z-axis z
2. Rotation by ff around the x-axis x’
3. Rotation by y around the z-axis z"

~J

~
x\
Y

~
Il

~

-

Important: Rotation around different axes!

@ ¢ 7 @ Z, @ yn @ N
-y y'
/—» = =~ = =
y R, R, x"! R. y
x Z

b
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Euler Angles
W 12 possible sequences of rotation axis

W zXz,XyX,yZy,ZYZ, XZX, YXY
W XxXyz,yzx,zZXy,XZy,ZyXx, YXZ

® Rotations around local or fixed axis
= in total 24 possible rotation

37 Robotics I: Introduction to Robotics | Chapter 1
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Roll, Pitch und Yaw

@ Another common convention is Euler convention x,y,

@ These special Euler angles are called Roll, Pitch, Yaw

Center of
Gravity

® Order of rotations:
1. Global x-axis around a (Roll) Pitch Ats
2. Global y-axis around [ (Pitch)
3. Global z-axis around y (Yaw)

+ Pitch

Roll Axis

Yaw Axis
+ Roll

by NASA [Public domain], via wikimedia Commons

b
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Euler Angles (lll)

® Advantages of Euler angles:
= More compact than rotation matrices
» More descriptive than rotation matrices

® Disadvantages of Euler angles:
= Not unique:

o Example:in Euler z, x', z" convention, Euler angles (45°,30°,—45°) and (0°,30°,—0°)
result in the same rotation! This is called Gimbal Lock.

= Not continuous:
o Euler angles of a continuous rotation are not continuous.
o Small changes in the orientation may lead to large changes in the Euler angles (next slide).
o Consequence: smooth interpolation between two Euler angles is not possible

39 Robotics I: Introduction to Robotics | Chapter 1
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Euler Angles: Interpolation Problem

Not continuous:

o Euler angles of a continuous rotation are not continuous.

o Small changes in the orientation may lead to huge changes in the Euler angles
o Consequence: smooth interpolation between two Euler angles is not possible

“ o p R

15. < 0
2 1
05 2
4
4 3 ' -
- i 4.
2 < 4 2 -~ : ~ 4 4 T
— 2 B
0 - - . 2
. 0 ° e L o 2
- 2 2 ] 0
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Euler Angles — Gimbal Lock (1)

® 12 different sequences are possible for the rotation matrices:
" ZXZ XYX YZY ZYZ XZX YXy
" XYZ YZX ZXY XZY ZYX YXZ

® Rotation sequence xyz (Roll-Pitch-Yaw):

Center of
Gravity

cosy —siny 0
R,y =|siny cosy O Pitch Axis
0 0 1
. + Pitch
cosp 0 sinf e
Ry,ﬁ - O 1 O
— Sin :B 0 cos ﬂ Roll Axis
1 O O . by NASA
1 y
Rya =|0 cosa —sina [Public domain], via
0 sina COS « Wikimedia Commons

b
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Euler Angles — Gimbal Lock (2) l&‘(IT
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lAssumption:,Bz—g 0 o0 _1
an(-2)= -1, eos(-)- peg=(0 1 0

® Multiplication of the matrices :

0 —siny —cosy) /1 0 0
R=Rz,y'Ry'ﬁ=_%'Rx,a= 0 cosy —siny |0 cosa -—sina

1 0 0 0 sina cosa

0 cosy cosa—sinysina —cosysina —sinycosa
1 0 0

0 cos(a+y) —sin(a+y)

(O —sinycosa —cosysina sinysina—cosycosa)
1 0 0

(O —sin(a +y) —cos(a+ y))

Common rotation axis for rotation around @ and y = 1 DoF is lost
Changes to a and y currently have the same effect

42 Robotics I: Introduction to Robotics | Chapter 1
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® Gimbal (cardanic bearing) allows rotation around
a predetermined axis

= Combination of 3 elements to allow free movement

= Measuring instruments such as gyroscope, compass

by Bautsch
[Public domain], via
Wikimedia Commons

@ Gimbal Lock

= At certain angles, two axes become
dependent on each other

= One degree of freedom is lost

(= no instantaneous speed possible in this
degree of freedom)

by MathsPoetry
3 DoF 2 DoF [CC BY-SA 3.0], via

Wikimedia Commons

b
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Rotation Matrices vs. Euler Angles
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Rotation matrices

= “Natural” representation from the
perspective of linear algebra

= Unambiguous, continuous

=  Redundancy through 9 values

Euler angles

More compact
More meaningful
Not unambiguous
Gimbal Lock

Not continuous

Robotics I: Introduction to Robotics | Chapter 1
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Euler Angles vs. Roll-Pitch-Yaw

KIT

Karlsruhe Institute of Technology

Euler angles (z, x', Z"')

=  Multiplication from left to right
RS == Rz,a RX’,,B RZ”,)/

= Each rotation is local (refers to the new
coordinate system)

= Rotation around different axes

Roll-Pitch-Yaw (x, y, z)

=  Multiplication from right to left
Rg = Rz,y Ry,ﬁ Rx,a

= Each rotation is global (refers to the
global coordinate system)

= Rotation around fixed axes

Robotics I: Introduction to Robotics | Chapter 1
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Representation of orientation with 3 X 3 matrices

Assessment:

@ Advantage: Vector and rotation matrix are descriptive and therefore a common way to
represent poses (e.g. object and end effector pose)

® Disadvantage: Vector and matrix operations must be performed separately :

(p,R) with p € R3 and R € SO(3) c R3*3

Goal: Closed representation of rotation and translation in a matrix

— Use of affine transformations (projective geometry)

Robotics I: Introduction to Robotics | Chapter 1
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Affine Transformations (l)

® An affine space is an extension of the Euclidean space.

® It contains points and vectors expressed in extended (or homogeneous) coordinates:

_ 4 h = 1 for positions
a = (ay, Ay, Az h)T’ a€R" he{0l} h = 0 for directions

b
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Affine Transformations (l)

® Affine transformations can be defined such that linear transformations in the Euclidean
space (e.g., rotation, scaling and shear around the origin) can be combined with
translations and be expressed in homogeneous coordinates:

b= ()=(3 9E+Q=G HE)

At
3 3x3 4x4
bx,t,oER® A€R (oT 1)ER

0 represents the null vector

48 Robotics I: Introduction to Robotics | Chapter 1




KIT

Affine Transformations: Advantages

W It is possible to formulate rotations around arbitrary axes in affine space.

@ Rotations and translations can be combine in a single homogeneous
4 X 4 matrix.

This means that rotations and translations can be handled uniformly.

b
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Coordinate Systems (Frames)

® Coordinate systems, also called frames:
Can be defined at various locations

= Basis coordinate system (BCS):
Reference system, e.g.,
in the robot’s base or as a
“world” coordinate system

» End effector coordinate system (ECS):
Attached to an end effector

= Object coordinate system (OCS):
Attached to an object I BCS

50 Robotics I: Introduction to Robotics | Chapter 1
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Homogeneous 4 X 4 —Matrix (1) "Aj(IT

® Homogeneous 4 X 4 Matrix

_(A t - 3
T—(OT 1) T € SE (3) with t € R3 and 4 € SO(3)

® Translation matrix: Translation of object coordinate systems (OCS) to
T
(tx, ty, tZ) in the basis coordinate system (BCS)

1 0 0 ¢,

0O 1 O
Tirans = 00 1 ¢t
z

O 0 O

| b
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Homogeneous 4 X 4 —Matrix (2) "AJ(IT

® Basic rotation matrices :

1 0 0 0

T — 0 cosa —sina 0
o 0 sina cosa O
0 0 0 1

cosfp 0 sinff 0

T = 0 1 0 0
v.B —sinff 0 cosfp O
0 0 0 1

cosy —siny 0 0

T = siny cosy 0 O
zy 0 0 1 0
0 0 0 1

52 Robotics I: Introduction to Robotics | Chapter 1




Example: Homogeneous Matrices -A-‘(IT
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® Two points a and b should be translated by +5 units in x and by —3 unitsin z

a= (43217 b= (6,2,41)T
1 0 0 +5 4 9
A =4 .a=|0 1 0 0 31 _[ 3
0 0 1 -3 2 —1
0 0 0 1 1 1
1 0 0 +5 6 11
4 w_[0 1 0 0 2\ [ 2
b_‘4b_001—3 41 \ 1
0 0 0 1 1 1

¥ b
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Homogeneous 4 X 4 Matrices: Inversion ﬂ(IT
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=R D=70=( 1)@
b=R-x+t & (1—T1_0T1 )
1. RotatexbyR
2. Shift the result by t (in the rotated coordinate system)

® We are looking for the homogeneous matrix T ™1, which maps b back to x:
R-x+t=Db
)= ()
x=R 1. (b-1t
x=R1-b-—R1!-t - -
x=(R"1)-b+ (=R -1) T-1 = (R —R 't)
x=(R")-b+(—RT-t)

¥ b
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Homogeneous 4 X 4 —Matrices
0
® Transformation of vector pyks (in OCS) into BCS:
 —
N @
Pecs = T * Pocs — \\ P \%,,
@11\ 6 1,
[ o in
nx O.X' ax ux
o~ _[ny 0y a, uy,\ _m o a u
mit: T'= n, o0, a, U, _(O 0 0 1)
0O 0 0 1

n normal
a approach
O orientation

u: Origin of OCS
N, 0, a: Unit vectors of OCS in relation to BCS

¥ b
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Homogeneous 4 X 4 —Matrices

® Inversion:
nx Ox ax ux

O O O 1
ny n, n, —-n'u
71— RT —R™u|_|ox 0o, 0o, —o'u
a, a, a, —a'u

56 Robotics I: Introduction to Robotics | Chapter 1
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Homogeneous 4 X 4 —Matrices

® A homogeneous 4x4 matrix contains 12 (n,0,a,u) n
on-trivial variables as opposed to 6 (x, y, z, a, 8, y) necessary

® Redundancy, but with additional boundary conditions that guarantee
orthogonality (R - RT =)

B Axes of rotation and rotation sequence are implicitly included

¥ b
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Comparison: Cartesian and Homogeneous Representation
® |In Cartesian coordinates:
x' Ny 0Oy Qy X Ly
y =" 0o 4y (3’> +| ty
Z’ n, 0z a,

® In homogeneous coordinates:

x' N, 0, Q) L, X
YV 9Ii_[y 0y ay U y
z' n, o, a; I, Z
1 O 0 0 1 1

Robotics I: Introduction to Robotics | Chapter 1
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Interpretation of Homogeneous 4 X 4 Matrices

® Pose description of a coordinate system:

APB describes the position (pose) of the coordinate system B
relative to the coordinate system A

® Transformation mapping (between coordinate systems):
ATy Bp — 4p, Ap = AT, . Bp
® Transformation operator (within a coordinate system):

T: “p, - “p,, Ap, =T - “p,

Robotics I: Introduction to Robotics | Chapter 1



Example: Coordinate System Transformation (1)

® Given: Point in the end effector coordinate system (ECS)
ECGSp = (0,-3,5)T

® Requested: Point in the base coordinate system (BCS) B¢p
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Example: Coordinate System Transformation (2)

® Given: Point in the end effector coordinate system (ECS)
ECGSp = (0,—3,5)"

® Requested: Point in the base coordinate system (BCS) B¢p

—7 0 0 1
8 0 1 0

O 0 1 -7 0 —2
sesp = (1 0 0 0 )[=3)_ [0
0 1 0 8 5 5
0O 0 0 1 1 1
61 Robotics I: Introduction to Robotics | Chapter 1
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Composition of Transformations (1)

Given
BCST , pose of object A in BCS
AT, pose of object B relative to OCS of 4
BCST 5 pose of object B relative to BCS

BCS _ BCST . A
- Ty = T, -“Tg

More compact notation compared to Cartesian representation:

KIT

Karlsruhe Institute of Technology

Rpnew + toneu = Ra-(Rp+tg) +t4 =Ry -Rp + (Ry - tp + ty)
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Composition of Transformations (1) "AJ(IT

= Pose of object 1 in BCS: BCSTm
= Pose of object 2 relative to object 1: 01T02
= Pose of object 3 relative to object 2 : 02T03
= Pose of object 3 relative to BCS BCSTO3

0 0
BCSTO3 _ BCSTol' 1Ty, - %2,

In representations using product of matrices, each matrix must refer to the position defined by
the matrix on the left:

n

A A
Ty, = ‘ ‘ Ty, with 4y = BCS
i=1

¥ b
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BCS — BCS . bottl
chp — Hbottle ’ echp

b
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Problems with Rotation Matrices and Euler Angles ?

® Problems with rotation matrices
= Highly redundant
= Computationally intensive (matrix multiplication)
» |nterpolation difficult

® Problems with Euler angles:
= Singularities (discontinuous)

® Are there other representations for rotations which avoid these problems?
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Quaternions to Represent Orientations ﬂ(IT
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B Are there other representations for rotations which avoid these problems?

® Answer: Yes, Quaternions!
= Quaternions are a extension of complex numbers ("hypercomplex numbers”)
» |ntroduced 1843 by William Rowan Hamilton
= Used in robotics and computer graphics
= See Horn 1987 for an overview

Berthold K. P. Horn, Closed-Form Solution of Absolute Orientation Using Unit Quaternions, Journal
of the Optical Society of America A 4(4):629-642; April 1987, DOI: 10.1364/J0SAA.4.000629

b
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Quaternions: Definition

W The set of quaternions H is defined by
H=C+ Cj with j2=-1 and i-j=—j-i=k

® An element q € H has the following form

q=(aw)" =a+ wi+tuyj+usk witha€ RueR3andk=1i-j

= a is referred to as the real part
= u = (uy,uy,uz)' isreferred to as the imaginary part

® In code, common notations are (w, x,y,z) or (x,y,z,w) withw =aand (x,y,z) = u

b
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Formula for Quaternions (1)

69

qg=(a,u)" =a+ ui+uyj+usk

i = j* = k¥ = i-j-k = -1
i-j = —j-i = k (not commutative!)
k-i = —i-k = j

Robotics I: Introduction to Robotics | Chapter 1
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Formula for Quaternions (2)

® Given two quaternions q, I

q=(aq,u)’, r=(b,v)'

| Addition:
q+r=(a+bu+v)’

® Scalar product:

(qr)=a-b+ (vlu)=a-b+v;-u  +v, u, +vs- us

® Multiplication:

q-r =@+ ui+uyj+uzk)  (b+vqi+vyj+ v3k)
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Formula for Quaternions (3)
® Quaternion:
q=(a,u)’
® Conjugated quaternion:
q' = (a,—uw)'"

® Norm of a quaternion:

lall = V& = V& a = a2 +uf +25+ 3

® Inverse of a quaternion:

*

_ q
1 j—
1 = qe
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Quaternions: Rotations (1)

Unit quaternions S ={q € H | [|ql|* = 1}
® Exist on the unit sphere $3 in 4D

* Norm=1

= 1 of 4 ,degrees of freedom” defined

= 3,, degrees of freedom” remaining

Unit sphere $? in 3D
® Form a group
= Group properties (reminder): 8
o Associative law
o Existence of an inverse element for each group element Unit sphere $° in 4D
o Existence of an identity

@ Define rotations There is an embedding from SO(3) c R3 to H

72 Robotics I: Introduction to Robotics | Chapter 1



KIT

Quaternions: Rotations (2)

Question: How do you represent a rotation of, e.g., 46° around the axis (0,1,0) T
as a quaternion?

® vector p € R3 as a quaternion q:

P = (xry'Z)T = q-= (0; p)T

® scalars s € R as a quaternion q:
q=(s,0)7

¥ b
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Quaternions: Rotations (3) -AJ(IT
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B A rotation described by a rotation axis a with unit length and an angle ¢ can
be represented by a quaternion:

q-= (cosf a- sinﬂ>
2° 2

® Applying the rotation q to a point p:
vi=q-v-q! withv = (0,p)?T

W As q is a unit quaternion, we have q~! = q*, and therefore:

¥ b
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Quaternions: Rotations (4)

® Concatenation of rotations of a vector v with two quaternions q and r:

= cos% u -sin% r = cosﬂ u -sin%
q 2 Yo SR g s
® Rotation with one quaternion:

fv)=q-v-q, h(v)=r-v-r*

® Then f o h describes the rotation by the quaternionp =q - r
(feh)(v) =fth(v)) =q-(r-v-r?)-q'

@ f o h corresponds to the rotation with the quaternions =q-r
= concatenation = multiplication

¥ b
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Quaternions: Example

® Rotation of the point
about the axis of rotation
with angles

76 Robotics I: Introduction to Robotics | Chapter 1

p=(1,09"'
a= (1,007
o = 90°

KIT

Karlsruhe Institute of Technology




77

Quaternions: Example

® Example:  Rotation of the point
about the axis of rotation
with angles

1. Representation of p as quaternion v

2. Rotation quaternion q

3. Conjugated Quaternion q*

4.  Rotation of v around q
5. Representation as point p,

KIT
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p=(1,09"'
a= (1,007
o = 90°

v=0+1i+0j +9k
q=cos§+ 1i-sin§+0j+0k
q’ =cos§—1i-sin§—0j—0k

ve=qvq" —->v,=0+4+1i—-9j+0k
Pr = (17_9r O)T

Note: The multiplication of quaternions is not commutative.
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Representing Rotations with Quaternions ﬂ(IT

® Advantages:
= Compact: 4 Values instead of 9 (rotation matrix)
= |llustrative (related to the axis/angle representation)
= Can be concatenated similar to rotation matrices
= Can be used for the calculation of the inverse kinematics (later)
= Unambiguous (no Gimbal lock)

= The representation is continuous (no jumps, see figures below)
® Drawback:
= Only for rotations, not for translations

ql

0.5._..-"' IR
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Quaternions: Interpolation

t=20 » t=1
® Goal: Continuous rotation between two orientations

@ Problems:
= Euler angles are not continuous
= Rotation matrices have many degrees of freedom
W Interpolation of quaternions using SLERP (Spherical Linear Interpolation)

® Similar to linear interpolation: a- (1 —t)+ b - t

b
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Quaternions: SLERP

® SLERP interpolation from q, to q, with the parameter t € [0, 1]:
Slerp(qy, 9z, t) = q1 - (41" - q2)°

(Powers of quaternions are not covered in the lecture)

@ Direct formulation of the SLERP interpolation:

sin((1-)-6) a; + sin(t-9)

Slerp(qy, qz,t) = qz  with (qq|qz) = cos@

sin @ sin @

® Result: Rotation with constant angular velocity

Robotics I: Introduction to Robotics | Chapter 1
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Quaternions: Interpolation Problems

® Problem: Orientations in SO(3) are covered twice by unit quaternions because
the unit quaternions q and —q correspond to the same rotation.

Proof:
= Rotation of v around q correspond to rotation of v around —q.

*vi=qvq =(—qQv(-q)
» The negative signs cancel each other out.

W SLERP therefore does not always calculate the shortest rotation
= It must be checked whether the rotation from q; to q, or —q; to q, is shorter
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Dual Quaternions (1)

Problem:
B Real quaternions (as before) are suitable for describing the orientation, ...

® but not to describe the position of an object (translation is missing).

Idea:

W Replace the 4 real values of a quaternion with dual numbers

® Obtain additional translational components to express the position of an
object

— Dual Quaternions

b
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Duals Quaternions (2): Dual Numbers

@ Dual numbers are of the form
d=p+e-s, withe? =0
@ Primary part p, secondary part s
@ Similar to complex numbers, the usual operations can be derived

Wifd, =p,+¢-s,andd, =p, + €- s, are dual numbers, then the following
applies:

= Addition: di+d, =p;+ p,+e-(s; +5,)
= Multiplication: d; - d, =p; - p,+e-(py - s, + p, - 59)

¥ b
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Duale Quaternions (3)
Description

DQ = (dy, d,, ds, d,), d; = dp; + € - ds;

® Primary part dp; contains the angle value 6 /2

@ Secondary part ds; contains the translation value d /2

Robotics I: Introduction to Robotics | Chapter 1
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Dual Quaternions (4)

Multiplication table for dual unit quaternions

~
|
—

&l —&

g —ck

== . .
~—

ek gj
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'
(N
H
)
)

&l g ek
—& ek —&j
—ck —& &l
g —é&l —&
0 0 0
0 0 0
0 0 0
0 0 0
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Dual Quaternions (5)

® Rotation around an axis a with the 9:

_ 0 (2 0,0,0,0
qr—<cos(§>,a-sm<z>>+s-(, ,0,0)

® Translation with the vector t = (tx, Ly, tz)

t.. t, t
=(1,0,0,0 .<O’_x,_y,_z)
® Combination for a transformation T:
adr = q¢: 9~
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Duale Quaternions (6)

B A transformation T with the rotational part r and the translational part £, can
be described as a dual quaternion:

dr = q: 9r

@ A transformation qr is applied to a point p (as a dual quaternion) as follows:
P'=drpdqr’, withqr* = (9. 9,)" = q,"q;"

® Conjugate (complex and dual) fromq=p + ¢ s:

q*=p*_€'s*

¥ b
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Duale Quaternions: Example (1)
® Example:  Rotation of point p=(345"
around rotation axis a=(1,0, O)T mit 8 = 180°
and translation with p:=(42,6)7
@ p as a dual quaternion v, Vg =1+ 3¢l +4¢j + 5¢k
@ Rotation as dual quaternion q, q, = cosg + 1i - sing +0j+0k=1i
® Translation as a dual quaternion q; q: =1+ 2¢i + 1¢j + 3¢k

® Combination as dual quaternion qr

Qr =q; ' q, = (1 + 2ie + 1je + 3ke) -i =i — 2 — 1€k + 3¢j

¥ b
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Duale Quaternions: Example (2) o
® Example:  Rotation of point p=(345)"

around rotation axis a=(1,0,0)T witho = 180°

and translation with pr=(4,2,6)7

qr =0+ i) +e(—2—-1k+3j) =i —2e — 1k + 3¢j
qr = (0—i) —e(—2+ 1k —-3j) = —i+ 2e + 3¢j — 1¢k

® Transformation:
Ve =qrVyqr = (i —2e — 1ek + 3¢j)(1 + 3¢ei + 4¢j + 5¢k) q7

= (i — 5¢ — 2¢j + 3ek)(—i + 2e + 3¢j — 1¢€k)
=1+ 7l —2¢ + 1ek
® Result: pr = (7, =2, 1T
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Duale Quaternions: Example (3)

® Example:  Rotation of point p=(345"
around rotation axis a=(1,0, O)T with 8 = 180°
and translation with p:=(42,6)"

@ Result: pr = (7, =2, 1T

@ Test:
= Rotation around the x axis with ¢ = 180°

Pr = (3» —4, _S)T

= Translation with p, = (4,2,6)":
Pr=Pr+P: =3 —4-5"+(426)'=(7,-2,17
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Dual Quaternions: Evaluation

Advantages:
® Dual quaternions are suitable for describing the pose of an object
® Operations on dual quaternions also allow all required transformations

® Low redundancy, as only 8 values compared to 12 values of the homogeneous
matrix representation

@ Generally low number of individual operations per arithmetic operation

Disadvantages:
@ Difficulty for the user to describe a pose by specifying a dual quaternion
® Complex processing instructions (e.g. for multiplication)
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W Different forms of representation for rotations and translations in Euclidean
space
= Rotation matrix and translation vector

Euler angles

Homogeneous 4x4 matrix

Quaternions

Dual quaternions

W Each representation has specific advantages and disadvantages
® Concrete application determines the choice of method
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